69 research outputs found

    Synchrotron-based visualization and segmentation of elastic lamellae in the mouse carotid artery during quasi-static pressure inflation

    Get PDF
    This dataset contains images that were obtained during quasi-static pressure inflation of mouse carotid arteries. Images were taken with phase propagation imaging at the X02DA TOMCAT beamline of the Swiss Light Source synchrotron at the Paul Scherrer Institute in Villigen, Switzerland. Scans of n=12 left carotid arteries (n-6 Apoe-deficient mice, n=6 wild-type mice, all on a C57Bl6J background) were taken at pressure levels of 0, 10, 20, 30, 40, 50, 70, 90 and 120 mmHg. For analysis we selected 75 images from the center of each stack (starting at the center of the stack, and skipping 2 of every three images in both cranial and caudal axial directions) for each sample and for each pressure level, resulting in a total of 75 x 12 x 9 = 8100 analyzed images from 108 different scans. Segmentation, 3D visualization and geometric analysis is presented in the corresponding manuscript. Files are uploaded in 16bit .tif format and are named: mouseid_pressurelevel_stacknumber, with mouseid consisting of either Apoe (Apoe-deficient) or Bl (wild-type) and the mouse number, pressurelevel varies from P0 to P120 and stacknumber indicates which image from the stack has been uploaded

    Synchrotron-based phase contrast imaging of cardiovascular tissue in mice-grating interferometry or phase propagation?

    Get PDF
    Synchrotron-based x-ray phase-contrast imaging allows for detailed 3D insight into the microstructure of soft tissue and is increasingly used to improve our understanding of mouse models of cardiovascular disease. Two techniques dominate the field: grating interferometry, with superior density contrast at mid to lower microscopic resolutions, and propagation-based phase contrast, facilitating high-resolution tissue imaging. The choice between these techniques depends on which features one is interested in visualizing and is thus highly sample-dependent. In this manuscript we systematically evaluate the advantages and disadvantages of grating interferometry and propagation-based phase contrast for the specific application of pre-clinical cardiovascular tissue. We scanned samples obtained from 5 different mouse models of cardiovascular disease, ranging from carotid plaques over ascending and abdominal aortic aneurysms to hypertrophic hearts. Based on our findings we discuss in detail how synchrotron-based imaging can be used to increase our understanding of the anatomy and biomechanics of cardiovascular disease in mice. We also present a flowchart that can help future users to select the best synchrotron-based phase contrast technique for their pre-clinical cardiovascular samples

    Co-localization of microstructural damage and excessive mechanical strain at aortic branches in angiotensin-II-infused mice

    Get PDF
    Animal models of aortic aneurysm and dissection can enhance our limited understanding of the etiology of these lethal conditions particularly because early-stage longitudinal data are scant in humans. Yet, the pathogenesis of often-studied mouse models and the potential contribution of aortic biomechanics therein remain elusive. In this work, we combined micro-CT and synchrotron-based imaging with computational biomechanics to estimate in vivo aortic strains in the abdominal aorta of angiotensin-II-infused ApoE-deficient mice, which were compared with mouse-specific aortic microstructural damage inferred from histopathology. Targeted histology showed that the 3D distribution of micro-CT contrast agent that had been injected in vivo co-localized with precursor vascular damage in the aortic wall at 3 days of hypertension, with damage predominantly near the ostia of the celiac and superior mesenteric arteries. Computations similarly revealed higher mechanical strain in branching relative to non-branching regions, thus resulting in a positive correlation between high strain and vascular damage in branching segments that included the celiac, superior mesenteric, and right renal arteries. These results suggest a mechanically driven initiation of damage at these locations, which was supported by 3D synchrotron imaging of load-induced ex vivo delaminations of angiotensin-II-infused suprarenal abdominal aortas. That is, the major intramural delamination plane in the ex vivo tested aortas was also near side branches and specifically around the celiac artery. Our findings thus support the hypothesis of an early mechanically mediated formation of microstructural defects at aortic branching sites that subsequently propagate into a macroscopic medial tear, giving rise to aortic dissection in angiotensin-II-infused mice

    Micrometer-resolution X-ray tomographic full-volume reconstruction of an intact post-mortem juvenile rat lung

    Get PDF
    In this article, we present an X-ray tomographic imaging method that is well suited for pulmonary disease studies in animal models to resolve the full pathway from gas intake to gas exchange. Current state-of-the-art synchrotron-based tomographic phase-contrast imaging methods allow for three-dimensional microscopic imaging data to be acquired non-destructively in scan times of the order of seconds with good soft tissue contrast. However, when studying multi-scale hierarchically structured objects, such as the mammalian lung, the overall sample size typically exceeds the field of view illuminated by the X-rays in a single scan and the necessity for achieving a high spatial resolution conflicts with the need to image the whole sample. Several image stitching and calibration techniques to achieve extended high-resolution fields of view have been reported, but those approaches tend to fail when imaging non-stable samples, thus precluding tomographic measurements of large biological samples, which are prone to degradation and motion during extended scan times. In this work, we demonstrate a full-volume three-dimensional reconstruction of an intact rat lung under immediate post-mortem conditions and at an isotropic voxel size of (2.75 µm)3. We present the methodology for collecting multiple local tomographies with 360° extended field of view scans followed by locally non-rigid volumetric stitching. Applied to the lung, it allows to resolve the entire pulmonary structure from the trachea down to the parenchyma in a single dataset. The complete dataset is available online (https://doi.org/10.16907/7eb141d3-11f1-47a6-9d0e-76f8832ed1b2)

    Triple Contrast CT Method Enables Simultaneous Evaluation of Articular Cartilage Composition and Segmentation

    Get PDF
    Early degenerative changes of articular cartilage are detected using contrast-enhanced computed tomography (CT) with a cationic contrast agent (CA). However, cationic CA diffusion into degenerated cartilage decreases with proteoglycan depletion and increases with elevated water content, thus hampering tissue evaluation at early diffusion time points. Furthermore, the contrast at synovial fluid-cartilage interface diminishes as a function of diffusion time hindering accurate cartilage segmentation. For the first time, we employ quantitative dual-energy CT (QDECT) imaging utilizing a mixture of three CAs (cationic CA4+ and non-ionic gadoteridol which are sensitive to proteoglycan and water contents, respectively, and bismuth nanoparticles which highlight the cartilage surface) to simultaneously segment the articulating surfaces and determine of the cartilage condition. Intact healthy, proteoglycan-depleted, and mechanically injured bovine cartilage samples (n = 27) were halved and imaged with synchrotron microCT 2-h post immersion in triple CA or in dual CA (CA4+ and gadoteridol). CA4+ and gadoteridol partitions were determined using QDECT, and pairwise evaluation of these partitions was conducted for samples immersed in dual and triple CAs. In conclusion, the triple CA method is sensitive to proteoglycan depletion while maintaining sufficient contrast at the articular surface to enable detection of cartilage lesions caused by mechanical impact

    Replication Data for: PLOS ONE manuscript

    No full text
    Accompanying datasets for the manuscript published in PLOS ON

    A multi-purpose imaging endstation for high-resolution micrometer-scaled sub-second tomography

    No full text
    Time-resolved imaging of dynamic processes, ranging from biological in vivo studies to materials under in situ and in operando conditions, requires a flexible endstation capable of controlling complex components that interact in different configurations and at high speeds. At the X02DA TOMCAT beamline we have recently achieved in situ tomographic measurements at a rate of 20 Hz. Independently, we have shown the feasibility of in vivo lung imaging down to the micrometer scale. In the present paper, we discuss the latest developments in view of instrumentation and the accompanying components for achieving these two types of measurements. As the prime example, we focus on the technical requirements for in vivo tomographic microscopy of the lung at the micrometer scale in terms of acquisition schemes, triggering and radiation dose. We identify ultra-short single-projection exposures combined with accurate triggering capabilities as the main prerequisites to obtain high-quality reconstructions while limiting the X-ray dose imparted on the living sample. The presented endstation offers generic high-speed imaging capabilities, as it is compatible with a variety of experimental setups and suitable for a wide range of time-resolved studies

    Tomographic in vivo microscopy for the study of lung physiology at the alveolar level

    Get PDF
    Lungs represent the essential part of the mammalian respiratory system, which is reflected in the fact that lung failure still is one of the leading causes of morbidity and mortality worldwide. Establishing the connection between macroscopic observations of inspiration and expiration and the processes taking place at the microscopic scale remains crucial to understand fundamental physiological and pathological processes. Here we demonstrate for the first time in vivo synchrotron-based tomographic imaging of lungs with pixel sizes down to a micrometer, enabling first insights into high-resolution lung structure. We report the methodological ability to study lung inflation patterns at the alveolar scale and its potential in resolving still open questions in lung physiology. As a first application, we identified heterogeneous distension patterns at the alveolar level and assessed first comparisons of lungs between the in vivo and immediate post mortem states
    • …
    corecore